Cara kerjanya: Strategi tren silang sederhana menjadi panjang ketika tren cepat melintasi tren lambat, dan/atau menjadi pendek ketika tren cepat melintasi di bawah tren lambat. Opsi untuk kedua arah tren dibangun ke dalam templat strategi ini. Skrip juga dikodekan dengan cara yang memungkinkan Anda untuk mengaktifkan/memodifikasi pengaturan piramida dan skala ke posisi dari waktu ke waktu setelah tren telah melintasi.
Kasus penggunaan: Jenis strategi ini dapat mengurangi volatilitas laba dan dapat membantu menghindari penurunan pasar yang besar. Misalnya, mereka yang menjalankan strategi lintas tren jangka panjang mungkin tidak menyadari setengah dari penurunan pasar yang sedang lesu atau jatuh pada tahun 2002, 2008, 2010, dst. Namun, di tahun-tahun lain, mereka mungkin keluar dari pasar dari waktu ke waktu pada titik-titik yang tidak menguntungkan yang tidak berakhir dengan penurunan, atau terkadang pasar bergerak menyamping. Beberapa juga menggunakannya untuk mengurangi volatilitas dan kemudian menambahkan leverage untuk mencoba mengalahkan pembelian/penahanan aset dasar dalam ambang batas penurunan yang dapat diterima.
en 16.54 New Google SEO Bandung, Indonesia
// This source code is subject to the terms of the Mozilla Public License 2.0 at https://mozilla.org/MPL/2.0/
// @version=5
// Author = TradeAutomation
strategy(title="Multi Trend Cross Strategy Template", shorttitle="Multi Trend Cross Strategy", process_orders_on_close=true, overlay=true, commission_type=strategy.commission.cash_per_contract, commission_value=0.0035, initial_capital = 1000000, default_qty_type=strategy.percent_of_equity, default_qty_value=100)
// Backtest Date Range Inputs //
StartTime = input.time(defval=timestamp('01 Jan 2000 05:00 +0000'), group="Date Range", title='Start Time')
EndTime = input.time(defval=timestamp('01 Jan 2099 00:00 +0000'), group="Date Range", title='End Time')
InDateRange = time>=StartTime and time<=EndTime
// Trend Selector //
TrendSelectorInput = input.string(title="Fast Trend Selector", defval="EMA", group="Core Settings", options=["ALMA", "DEMA", "DSMA", "EMA", "HMA", "JMA", "KAMA", "Linear Regression (LSMA)", "RMA", "SMA", "SMMA", "Price Source", "TEMA", "TMA", "VAMA", "VIDYA", "VMA", "VWMA", "WMA", "WWMA", "ZLEMA"], tooltip="Select your fast trend")
TrendSelectorInput2 = input.string(title="Slow Trend Selector", defval="EMA", group="Core Settings", options=["ALMA", "DEMA", "DSMA", "EMA", "HMA", "JMA", "KAMA", "Linear Regression (LSMA)", "RMA", "SMA", "SMMA", "Price Source", "TEMA", "TMA", "VAMA", "VIDYA", "VMA", "VWMA", "WMA", "WWMA", "ZLEMA"], tooltip="Select your slow trend")
src = input.source(close, "Price Source", group="Core Settings", tooltip="This is the price source being used for the trends to calculate based on")
length = input.int(10, "Fast Trend Length", group="Core Settings", step=5, tooltip="A long is entered when the selected fast trend crosses over the selected slow trend")
length2 = input.int(200, "Slow Trend Length", group="Core Settings", step=5, tooltip="A long is entered when the selected fast trend crosses over the selected slow trend")
LineWidth = input.int(1, "Line Width", group="Core Settings", tooltip="This is the width of the line plotted that represents the selected trend")
// Individual Moving Average / Regression Setting //
AlmaOffset = input.float(0.85, "ALMA Offset", group="Individual Trend Settings", tooltip="This only applies when ALMA is selected")
AlmaSigma = input.float(6, "ALMA Sigma", group="Individual Trend Settings", tooltip="This only applies when ALMA is selected")
ATRFactor = input.float(3, "ATR Multiplier For SuperTrend", group="Individual Trend Settings", tooltip="This only applies when SuperTrend is selected")
ATRLength = input.int(12, "ATR Length For SuperTrend", group="Individual Trend Settings", tooltip="This only applies when SuperTrend is selected")
ssfLength = input.int(20, "DSMA Super Smoother Filter Length", minval=1, tooltip="This only applies when EDSMA is selected", group="Individual Trend Settings")
ssfPoles = input.int(2, "DSMA Super Smoother Filter Poles", options=[2, 3], tooltip="This only applies when EDSMA is selected", group="Individual Trend Settings")
JMApower = input.int(2, "JMA Power Parameter", group="Individual Trend Settings", tooltip="This only applies when JMA is selected")
phase = input.int(-45, title="JMA Phase Parameter", step=10, minval=-110, maxval=110, group="Individual Trend Settings", tooltip="This only applies when JMA is selected")
KamaAlpha = input.float(3, "KAMA's Alpha", minval=1,step=0.5, group="Individual Trend Settings", tooltip="This only applies when KAMA is selected")
LinRegOffset = input.int(0, "Linear Regression Offset", group="Individual Trend Settings", tooltip="This only applies when Linear Regression is selected")
VAMALookback =input.int(12, "VAMA Volatility lookback", group="Individual Trend Settings", tooltip="This only applies when VAMA is selected")
// Trend Indicators With Library Functions //
ALMA = ta.alma(src, length, AlmaOffset, AlmaSigma)
EMA = ta.ema(src, length)
HMA = ta.hma(src, length)
LinReg = ta.linreg(src, length, LinRegOffset)
RMA = ta.rma(src, length)
SMA = ta.sma(src, length)
VWMA = ta.vwma(src, length)
WMA = ta.wma(src, length)
ALMA2 = ta.alma(src, length2, AlmaOffset, AlmaSigma)
EMA2 = ta.ema(src, length2)
HMA2 = ta.hma(src, length2)
LinReg2 = ta.linreg(src, length2, LinRegOffset)
RMA2 = ta.rma(src, length2)
SMA2 = ta.sma(src, length2)
VWMA2 = ta.vwma(src, length2)
WMA2 = ta.wma(src, length2)
// Additional Trend Indicators Built In And/Or Open Sourced //
//DEMA
de1 = ta.ema(src, length)
de2 = ta.ema(de1, length)
DEMA = 2 * de1 - de2
de3 = ta.ema(src, length2)
de4 = ta.ema(de3, length2)
DEMA2 = 2 * de3 - de4
// Ehlers Deviation-Scaled Moving Average - DSMA [Everget]
PI = 2 * math.asin(1)
get2PoleSSF(src, length) =>
arg = math.sqrt(2) * PI / length
a1 = math.exp(-arg)
b1 = 2 * a1 * math.cos(arg)
c2 = b1
c3 = -math.pow(a1, 2)
c1 = 1 - c2 - c3
var ssf = 0.0
ssf := c1 * src + c2 * nz(ssf[1]) + c3 * nz(ssf[2])
get3PoleSSF(src, length) =>
arg = PI / length
a1 = math.exp(-arg)
b1 = 2 * a1 * math.cos(1.738 * arg)
c1 = math.pow(a1, 2)
coef2 = b1 + c1
coef3 = -(c1 + b1 * c1)
coef4 = math.pow(c1, 2)
coef1 = 1 - coef2 - coef3 - coef4
var ssf = 0.0
ssf := coef1 * src + coef2 * nz(ssf[1]) + coef3 * nz(ssf[2]) + coef4 * nz(ssf[3])
zeros = src - nz(src[2])
avgZeros = (zeros + zeros[1]) / 2
// Ehlers Super Smoother Filter
ssf = ssfPoles == 2
? get2PoleSSF(avgZeros, ssfLength)
: get3PoleSSF(avgZeros, ssfLength)
// Rescale filter in terms of Standard Deviations
stdev = ta.stdev(ssf, length)
scaledFilter = stdev != 0
? ssf / stdev
: 0
alpha1 = 5 * math.abs(scaledFilter) / length
EDSMA = 0.0
EDSMA := alpha1 * src + (1 - alpha1) * nz(EDSMA[1])
get2PoleSSF2(src, length2) =>
arg = math.sqrt(2) * PI / length2
a1 = math.exp(-arg)
b1 = 2 * a1 * math.cos(arg)
c2 = b1
c3 = -math.pow(a1, 2)
c1 = 1 - c2 - c3
var ssf2 = 0.0
ssf2 := c1 * src + c2 * nz(ssf2[1]) + c3 * nz(ssf2[2])
get3PoleSSF2(src, length2) =>
arg = PI / length2
a1 = math.exp(-arg)
b1 = 2 * a1 * math.cos(1.738 * arg)
c1 = math.pow(a1, 2)
coef2 = b1 + c1
coef3 = -(c1 + b1 * c1)
coef4 = math.pow(c1, 2)
coef1 = 1 - coef2 - coef3 - coef4
var ssf2 = 0.0
ssf2 := coef1 * src + coef2 * nz(ssf2[1]) + coef3 * nz(ssf2[2]) + coef4 * nz(ssf2[3])
// Ehlers Super Smoother Filter
ssf2 = ssfPoles == 2
? get2PoleSSF2(avgZeros, ssfLength)
: get3PoleSSF2(avgZeros, ssfLength)
// Rescale filter in terms of Standard Deviations
stdev2 = ta.stdev(ssf2, length2)
scaledFilter2 = stdev2 != 0
? ssf2 / stdev2
: 0
alpha12 = 5 * math.abs(scaledFilter2) / length2
EDSMA2 = 0.0
EDSMA2 := alpha12 * src + (1 - alpha12) * nz(EDSMA2[1])
//JMA [Everget]
phaseRatio = phase < -100 ? 0.5 : phase > 100 ? 2.5 : phase / 100 + 1.5
beta = 0.45 * (length - 1) / (0.45 * (length - 1) + 2)
alpha = math.pow(beta, JMApower)
var JMA = 0.0
var e0 = 0.0
e0 := (1 - alpha) * src + alpha * nz(e0[1])
var e1 = 0.0
e1 := (src - e0) * (1 - beta) + beta * nz(e1[1])
var e2 = 0.0
e2 := (e0 + phaseRatio * e1 - nz(JMA[1])) * math.pow(1 - alpha, 2) + math.pow(alpha, 2) * nz(e2[1])
JMA := e2 + nz(JMA[1])
beta2 = 0.45 * (length2 - 1) / (0.45 * (length2 - 1) + 2)
alpha2 = math.pow(beta2, JMApower)
var JMA2 = 0.0
var e02 = 0.0
e02 := (1 - alpha2) * src + alpha2 * nz(e02[1])
var e12 = 0.0
e12 := (src - e02) * (1 - beta2) + beta2 * nz(e12[1])
var e22 = 0.0
e22 := (e02 + phaseRatio * e12 - nz(JMA2[1])) * math.pow(1 - alpha2, 2) + math.pow(alpha2, 2) * nz(e22[1])
JMA2 := e22 + nz(JMA2[1])
//KAMA [Everget]
var KAMA = 0.0
fastAlpha = 2.0 / (KamaAlpha + 1)
slowAlpha = 2.0 / 31
momentum = math.abs(ta.change(src, length))
volatility = math.sum(math.abs(ta.change(src)), length)
efficiencyRatio = volatility != 0 ? momentum / volatility : 0
smoothingConstant = math.pow((efficiencyRatio * (fastAlpha - slowAlpha)) + slowAlpha, 2)
KAMA := nz(KAMA[1], src) + smoothingConstant * (src - nz(KAMA[1], src))
var KAMA2 = 0.0
momentum2 = math.abs(ta.change(src, length2))
volatility2 = math.sum(math.abs(ta.change(src)), length2)
efficiencyRatio2 = volatility2 != 0 ? momentum2 / volatility2 : 0
smoothingConstant2 = math.pow((efficiencyRatio2 * (fastAlpha - slowAlpha)) + slowAlpha, 2)
KAMA2 := nz(KAMA2[1], src) + smoothingConstant2 * (src - nz(KAMA2[1], src))
//SMMA
var SMMA = 0.0
SMMA := na(SMMA[1]) ? ta.sma(src, length) : (SMMA[1] * (length - 1) + src) / length
var SMMA2 = 0.0
SMMA2 := na(SMMA2[1]) ? ta.sma(src, length2) : (SMMA2[1] * (length2 - 1) + src) / length2
//TEMA
t1 = ta.ema(src, length)
t2 = ta.ema(t1, length)
t3 = ta.ema(t2, length)
TEMA = 3 * (t1 - t2) + t3
t12 = ta.ema(src, length2)
t22 = ta.ema(t12, length2)
t32 = ta.ema(t22, length2)
TEMA2 = 3 * (t12 - t22) + t32
//TMA
TMA = ta.sma(ta.sma(src, math.ceil(length / 2)), math.floor(length / 2) + 1)
TMA2 = ta.sma(ta.sma(src, math.ceil(length2 / 2)), math.floor(length2 / 2) + 1)
//VAMA [Duyck]
mid=ta.ema(src,length)
dev=src-mid
vol_up=ta.highest(dev,VAMALookback)
vol_down=ta.lowest(dev,VAMALookback)
VAMA = mid+math.avg(vol_up,vol_down)
mid2=ta.ema(src,length2)
dev2=src-mid2
vol_up2=ta.highest(dev2,VAMALookback)
vol_down2=ta.lowest(dev2,VAMALookback)
VAMA2 = mid2+math.avg(vol_up2,vol_down2)
//VIDYA [KivancOzbilgic]
var VIDYA=0.0
VMAalpha=2/(length+1)
ud1=src>src[1] ? src-src[1] : 0
dd1=src<src[1] ? src[1]-src : 0
UD=math.sum(ud1,9)
DD=math.sum(dd1,9)
CMO=nz((UD-DD)/(UD+DD))
VIDYA := na(VIDYA[1]) ? ta.sma(src, length) : nz(VMAalpha*math.abs(CMO)*src)+(1-VMAalpha*math.abs(CMO))*nz(VIDYA[1])
var VIDYA2=0.0
VMAalpha2=2/(length2+1)
ud12=src>src[1] ? src-src[1] : 0
dd12=src<src[1] ? src[1]-src : 0
UD2=math.sum(ud12,9)
DD2=math.sum(dd12,9)
CMO2=nz((UD2-DD2)/(UD2+DD2))
VIDYA2 := na(VIDYA2[1]) ? ta.sma(src, length2) : nz(VMAalpha2*math.abs(CMO2)*src)+(1-VMAalpha2*math.abs(CMO2))*nz(VIDYA2[1])
//VMA [LazyBear]
sc = 1/length
pdm = math.max((src - src[1]), 0)
mdm = math.max((src[1] - src), 0)
var pdmS = 0.0
var mdmS = 0.0
pdmS := ((1 - sc)*nz(pdmS[1]) + sc*pdm)
mdmS := ((1 - sc)*nz(mdmS[1]) + sc*mdm)
s = pdmS + mdmS
pdi = pdmS/s
mdi = mdmS/s
var pdiS = 0.0
var mdiS = 0.0
pdiS := ((1 - sc)*nz(pdiS[1]) + sc*pdi)
mdiS := ((1 - sc)*nz(mdiS[1]) + sc*mdi)
d = math.abs(pdiS - mdiS)
s1 = pdiS + mdiS
var iS = 0.0
iS := ((1 - sc)*nz(iS[1]) + sc*d/s1)
hhv = ta.highest(iS, length)
llv = ta.lowest(iS, length)
d1 = hhv - llv
vi = (iS - llv)/d1
var VMA=0.0
VMA := na(VMA[1]) ? ta.sma(src, length) : sc*vi*src + (1 - sc*vi)*nz(VMA[1])
sc2 = 1/length2
pdm2 = math.max((src - src[1]), 0)
mdm2 = math.max((src[1] - src), 0)
var pdmS2 = 0.0
var mdmS2 = 0.0
pdmS2 := ((1 - sc2)*nz(pdmS2[1]) + sc2*pdm2)
mdmS2 := ((1 - sc2)*nz(mdmS2[1]) + sc2*mdm2)
s2 = pdmS2 + mdmS2
pdi2 = pdmS2/s2
mdi2 = mdmS2/s2
var pdiS2 = 0.0
var mdiS2 = 0.0
pdiS2 := ((1 - sc2)*nz(pdiS2[1]) + sc2*pdi2)
mdiS2 := ((1 - sc2)*nz(mdiS2[1]) + sc2*mdi2)
d2 = math.abs(pdiS2 - mdiS2)
s12 = pdiS2 + mdiS2
var iS2 = 0.0
iS2 := ((1 - sc2)*nz(iS2[1]) + sc2*d2/s12)
hhv2 = ta.highest(iS2, length)
llv2 = ta.lowest(iS2, length)
d12 = hhv2 - llv2
vi2 = (iS2 - llv2)/d12
var VMA2=0.0
VMA2 := na(VMA2[1]) ? ta.sma(src, length2) : sc2*vi2*src + (1 - sc2*vi2)*nz(VMA2[1])
//WWMA
var WWMA=0.0
WWMA := (1/length)*src + (1-(1/length))*nz(WWMA[1])
var WWMA2=0.0
WWMA2 := (1/length2)*src + (1-(1/length2))*nz(WWMA2[1])
//Zero Lag EMA [KivancOzbilgic]
EMA1a = ta.ema(src,length)
EMA2a = ta.ema(EMA1a,length)
Diff = EMA1a - EMA2a
ZLEMA = EMA1a + Diff
EMA12 = ta.ema(src,length2)
EMA22 = ta.ema(EMA12,length2)
Diff2 = EMA12 - EMA22
ZLEMA2 = EMA12 + Diff2
// Trend Mapping and Plotting //
FastTrend = TrendSelectorInput == "ALMA" ? ALMA : TrendSelectorInput == "DEMA" ? DEMA : TrendSelectorInput == "DSMA" ? EDSMA : TrendSelectorInput == "EMA" ? EMA : TrendSelectorInput == "HMA" ? HMA : TrendSelectorInput == "JMA" ? JMA : TrendSelectorInput == "KAMA" ? KAMA : TrendSelectorInput == "Linear Regression (LSMA)" ? LinReg : TrendSelectorInput == "RMA" ? RMA : TrendSelectorInput == "SMA" ? SMA : TrendSelectorInput == "SMMA" ? SMMA : TrendSelectorInput == "Price Source" ? src : TrendSelectorInput == "TEMA" ? TEMA : TrendSelectorInput == "TMA" ? TMA : TrendSelectorInput == "VAMA" ? VAMA : TrendSelectorInput == "VIDYA" ? VIDYA : TrendSelectorInput == "VMA" ? VMA : TrendSelectorInput == "VWMA" ? VWMA : TrendSelectorInput == "WMA" ? WMA : TrendSelectorInput == "WWMA" ? WWMA : TrendSelectorInput == "ZLEMA" ? ZLEMA : SMA
SlowTrend = TrendSelectorInput2 == "ALMA" ? ALMA2 : TrendSelectorInput2 == "DEMA" ? DEMA2 : TrendSelectorInput2 == "DSMA" ? EDSMA2 : TrendSelectorInput2 == "EMA" ? EMA2 : TrendSelectorInput2 == "HMA" ? HMA2 : TrendSelectorInput2 == "JMA" ? JMA2 : TrendSelectorInput2 == "KAMA" ? KAMA2 : TrendSelectorInput2 == "Linear Regression (LSMA)" ? LinReg2 : TrendSelectorInput2 == "RMA" ? RMA2 : TrendSelectorInput2 == "SMA" ? SMA2 : TrendSelectorInput2 == "SMMA" ? SMMA2 : TrendSelectorInput2 == "Price Source" ? src : TrendSelectorInput2 == "TEMA" ? TEMA2 : TrendSelectorInput2 == "TMA" ? TMA2 : TrendSelectorInput2 == "VAMA" ? VAMA2 : TrendSelectorInput2 == "VIDYA" ? VIDYA2 : TrendSelectorInput2 == "VMA" ? VMA2 : TrendSelectorInput2 == "VWMA" ? VWMA2 : TrendSelectorInput2 == "WMA" ? WMA2 : TrendSelectorInput2 == "WWMA" ? WWMA2 : TrendSelectorInput2 == "ZLEMA" ? ZLEMA2 : SMA2
plot(FastTrend, color=color.green, linewidth=LineWidth)
plot(SlowTrend, color=color.red, linewidth=LineWidth)
//Short & Long Options
Long = input.bool(true, "Model Long Trades", group="Core Settings")
Short = input.bool(false, "Model Short Trades", group="Core Settings")
// Entry & Exit Functions //
if (InDateRange and Long==true and FastTrend>SlowTrend)
strategy.entry("Long", strategy.long, alert_message="Long")
if (InDateRange and Long==true and FastTrend<SlowTrend)
strategy.close("Long", alert_message="Close Long")
if (InDateRange and Short==true and FastTrend<SlowTrend)
strategy.entry("Short", strategy.short, alert_message="Short")
if (InDateRange and Short==true and FastTrend>SlowTrend)
strategy.close("Short", alert_message="Cover Short")
if (not InDateRange)
strategy.close_all(alert_message="End of Date Range")

Code Script Multi Trend Cross Strategy Template Trading View
Posted by Tutorial Lengkap Microsoft Office on Rabu, 02 Juli 2025
Kode chart Trading View BUY SELL
en 16.45 New Google SEO Bandung, Indonesia// This source code is subject to the terms of the Mozilla Public License 2.0 at https://mozilla.org/MPL/2.0/
// @version=5
// Author = TradeAutomation
strategy(title="Cumulative RSI Strategy", shorttitle="CRSI Strategy", process_orders_on_close=true, overlay=true, commission_type=strategy.commission.cash_per_contract, commission_value=.0035, slippage = 1, margin_long = 75, initial_capital = 25000, default_qty_type=strategy.percent_of_equity, default_qty_value=110)
// Cumulative RSI Indicator Calculations //
rlen = input.int(title="RSI Length", defval=3, minval=1)
cumlen = input(3, "RSI Cumulation Length")
rsi = ta.rsi(close, rlen)
cumRSI = math.sum(rsi, cumlen)
ob = (100*cumlen*input(94, "Oversold Level")*.01)
os = (100*cumlen*input(20, "Overbought Level")*.01)
// Operational Function //
TrendFilterInput = input(false, "Only Trade When Price is Above EMA?")
ema = ta.ema(close, input(100, "EMA Length"))
TrendisLong = (close>ema)
plot(ema)
// Backtest Timeframe Inputs //
startDate = input.int(title="Start Date", defval=1, minval=1, maxval=31)
startMonth = input.int(title="Start Month", defval=1, minval=1, maxval=12)
startYear = input.int(title="Start Year", defval=2010, minval=1950, maxval=2100)
endDate = input.int(title="End Date", defval=1, minval=1, maxval=31)
endMonth = input.int(title="End Month", defval=1, minval=1, maxval=12)
endYear = input.int(title="End Year", defval=2099, minval=1950, maxval=2100)
InDateRange = (time >= timestamp(syminfo.timezone, startYear, startMonth, startDate, 0, 0)) and (time < timestamp(syminfo.timezone, endYear, endMonth, endDate, 0, 0))
// Buy and Sell Functions //
if (InDateRange and TrendFilterInput==true)
strategy.entry("Long", strategy.long, when = ta.crossover(cumRSI, os) and TrendisLong, comment="Buy", alert_message="buy")
strategy.close("Long", when = ta.crossover(cumRSI, ob) , comment="Sell", alert_message="Sell")
if (InDateRange and TrendFilterInput==false)
strategy.entry("Long", strategy.long, when = ta.crossover(cumRSI, os), comment="Buy", alert_message="buy")
strategy.close("Long", when = ta.crossover(cumRSI, ob), comment="Sell", alert_message="sell")
if (not InDateRange)
strategy.close_all()
Produk yang paling laku untuk jualan online biasanya memenuhi beberapa kriteria: kebutuhan tinggi, harga terjangkau, mudah dikirim, dan tren yang sedang naik. Berikut daftar produk yang saat ini (2025) tergolong paling laris secara online di Indonesia:
Kategori Produk Paling Laku di Online Shop (Indonesia, 2025)
1. Fashion & Aksesoris
-
Pakaian wanita (gamis, blouse, dress)
-
Pakaian pria (kaos polos, celana jogger)
-
Hijab & kerudung
-
Jam tangan murah
-
Tas wanita pria (terutama lokal branded)
-
Sandal & sepatu casual
2. Produk Kecantikan & Perawatan Diri
-
Skincare lokal (Somethinc, MS Glow, Scarlett)
-
Makeup (lip cream, cushion)
-
Perawatan rambut (tonik, hair serum)
-
Sabun herbal, lulur, dan body scrub
3. Makanan & Minuman Siap Konsumsi
-
Makanan ringan kekinian (keripik pedas, basreng)
-
Frozen food (dimsum, sosis, kebab)
-
Minuman serbuk (kopi kekinian, boba instan, teh herbal)
4. Perlengkapan Rumah Tangga
-
Alat dapur mini (chopper, pemotong bawang)
-
Rak serbaguna (rak bumbu, rak sepatu)
-
Sprei, selimut, bantal karakter
-
LED dekoratif & lampu tidur unik
5. Produk Digital & Hobi
-
Pulsa & kuota (untung tipis tapi cepat)
-
Aksesori HP (softcase lucu, tempered glass)
-
Keyboard & mouse murah
-
Mainan edukasi anak / DIY kit
6. Produk Muslim
-
Al-Quran custom / Al-Quran pelangi
-
Mukena travel
-
Sajadah tebal portable
-
Paket hampers Ramadhan & Idul Fitri
Tips Memilih Produk untuk Jualan:
-
Cek tren di Tokopedia/Shopee: Lihat produk dengan label “terjual >10 rb”.
-
Perhatikan musiman: Produk Ramadhan, Lebaran, Natal, Tahun Baru sangat potensial.
-
Perhatikan margin & stok: Produk ringan dan margin tinggi (contoh skincare) lebih untung daripada yang berat dan bulky.
aku bisa bantu cari ide produk sesuai minat, modal, atau target pembeli kamu. Mau? komen mau !!!
en 04.42 New Google SEO Bandung, Indonesia
Produk yang paling laku untuk jualan online
Posted by Tutorial Lengkap Microsoft Office on Jumat, 16 Mei 2025
Hal-hal yang bisa anda buat dengan Microsoft Word
- Membuat dokumen jenis apapun seperti proposal, makalah, dan bahkan dokumen skala besar seperti buku dan novel
- Membuat sertifikat
- Membuat kartu ucapan, kartu nama, dan sejenisnya
- Membuat brosur, pamflet, dan beberapa macam media iklan dasar lainnya
- Membuat absensi, surat, dan sejenisnya
- Dan berbagai macam jenis media kertas lainnya
Persiapan
1. Menginstall Microsoft Office 2016/2019/365
2. Menggunakan satuan Centimeter
Istilah-istilah yang digunakan di artikel ini
- Dokumen: Istilah yang akan kita gunakan untuk apapun tulisan yang akan ada buat. Jika anda membuat sertifikat, makalah, surat, atau apapun itu, kita akan sama-sama menyebutnya sebagai dokumen.
- Tab: Istilah yang kita gunakan untuk merujuk ke tab/menu di Microsoft Word. Ada 10 tab/menu seperti File, Home, Insert, Design, Layout, dan lain sebagainya.
1. Mengatur Page Setup dan Margin
2. Pengelolaan paragraf
3. Menggunakan Page Break
Penulis menggunakan paragraf yang dibuat secara otomatis untuk tutorial ini. Cara membuatnya di Word adalah ketik “=rand()” dan tekan enter di keyboard anda!
4. Header & Footer dan Page Number
5. Menambahkan gambar dan tabel beserta caption
a. Cara menambahkan gambar ke Microsoft Word
b. Cara menambahkan tabel ke Microsoft Word
6. Menggunakan Style dan membuat Daftar Isi otomatis
7. Menambahkan Citation (Kutipan) dan Daftar Pustaka
Cara membuat daftar pustaka sudah penulis buat sebelumnya secara eksklusif, namun untuk Office 2010 dan Office 2013. Jika anda penasaran, ini dia artikel cara membuat daftar pustakanya.
8. Menambahkan Cover Page
9. Menggunakan Themes (Tema)
10. Menggunakan kotak pencarian untuk mencari tool yang akan anda gunakan dengan super cepat!
Gunakan tombol shortcut keyboard ALT + Q untuk mengakses kotak pencarian dengan cepat!

10 Langkah Belajar Microsoft Word Tercepat Untuk Semua
Posted by Tutorial Lengkap Microsoft Office on Senin, 27 April 2020
Step 2
Step 3
Step 4
Step 5
Step 6
Step 7
